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Magnetic eddies in an incompressible viscous fluid of 
high electrical conductivity 

By H. K. MOFFATT 
Trinity College, Cambridge 

(Received 11 April 1963) 

It is shown that in an incompressible fluid in which the magnetic diffusivity h is 
much less than the kinematic viscosity 1’) certain magnetic field distributions of 
limited spatial extent (conveniently described as magnetic eddies) can exist on 
a length scale such that the associated Reynolds number and magnetic Reynolds 
number are respectively small and large compared with unity. The Lorentz 
forces are in equilibrium with the dynamic forces associated with the fluid 
motion. The boundary Condition imposed on this motion is that at alarge distance 
from a magnetic eddy the velocity field should be a uniform axisymmetric irrota- 
tional straining motion. The eddies are steady in the limit h --f 0, but decay slowly 
in a fluid of finite conductivity. Two particular eddies are considered in detail: 
a disk-shaped eddy in a compressive straining motion, and a spherical eddy in an 
extensive straining motion. Possible applications to turbulence in interstellar 
gas clouds are qualitatively considered. 

1. Introduction 
In this paper, a fairly general motion of an incompressible fluid of very high 

conductivity is considered. It will be supposed that the magnetic diffusivity 
h is very much smaller than the kinematic viscosity v, or more strongly, that 

(All+ < 1. (1 .1)  

(It may be necessary to impose a more stringent condition in special cases; see 
equation (2 .35 ) . )  In  the absence of moving boundaries it is useful to characterize 
the motion by a typical rate of strain a rather than by a typical velocity. The 
restriction (1.1) is strong enough to ensure that there exists a range of length 
scales 1, < 1 < 1, within which the Reynolds number R = aP/v and the magnetic 
Reynolds number R,, = a12/A satisfy the inequalities 

R4 1, Ri 1.  (1.3) 

This combination of circumstances means that the lines of force of any ambient 
magnetic field are convected with the fluid and can diffuse only very slowly 
relative to it, whereas vorticity diffuses rapidly so that the motion of the fluid is 
controlled by viscous rather than by inertial forces. 

The restriction on the Reynolds number R is not an essential part of the 
physical theory to be presented, but it does allow considerable mathematical 
simplifications. Moreover, the types of solution available in this extreme case 
may indicate methods of approaching similar problems when R as well as R, is 
large compared with unity. The only application that is made of the results of 
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this paper is to those small-scale features of a turbulent velocity field for which 
the associated Reynolds number is small. 

In  the absence of any electric current or magnetic field distributions, the 
velocity relative to any point moving with the fluid is approximately a linear 
function of position throughout any region of dimension I ,  i.e. 

ui = aijxi. (1.3) 

This is an accepted approximation in turbulent flows where I is any length 
small compared with the scale of the smallest eddies of the turbulence (i.e. 
1 < (v3/e)% where e is the rate of dissipation of energy per unit mass of fluid). In a 
steady laminar flow, the velocity distribution (1.3) may be a reasonable approxi- 
mation for a large variety of flows, even if the length scale of the region under 
consideration is such that the associated Reynolds number is of order, or larger 
than, unity. In  general the tensor aii will not be symmetric and will be time- 
dependent. Here, for simplicity, attention is restricted to steady flows, irrota- 
tional in the absence of electric currents and symmetrical about an axis, so that, 
referred to the principal axes of strain, equation (1.3) becomes (using the in- 
compressibility condition, V . u = 0) 

u = (ax,ay, -2az).  (1.4) 

This will be taken as the outer boundary condition (as xi xi -+ m) in what follows. 
If a > 0, material volumes tend to be flattened and oriented parallel to the 
(x, y)-plane, while if a < 0, they tend to be drawn out into filaments parallel to 
the z-axis. The strain field may be conveniently described as ‘compressive’ or 
‘extensive’ in these respective cases. 

The main purpose of this paper is to enquire what happens when an axisym- 
metric ‘blob’ of magnetic field is present at  the centre of such a strain field. 
Specifically, we suppose that at  time t = 0 the velocity field is given by equation 
(1.4) (which is subsequently maintained as an outer boundary condition), and 
that there is a magnetic field H(r, z )  (in cylindrical polar co-ordinates (r ,  8 , z ) )  
which is non-zero in the volumeV,inside a closed surface 1x1 = f ( r ) ,  and identically 
zero outside this surface (on which there may flow a surface current). We suppose 
in the first instance that the conductivity is infinite ( A  = 0), so that the magnetic 
field is subsequently confined to the material volume V ( t )  that was initially V,. 

The Lorentz force associated with the magnetic blob acts as a perturbing force 
on the uniform strain field. If the Lorentz force is negligible, the strain distorts the 
volume V ( t )  into a disk whose dimensions increase as eat if a > 0, or into a filament 
whose length increases as ecZat if a < 0, and in either case the magnetic lines of 
force in V( t )  are stretched without limit. It seems likely that eventually it will 
not be possible to ignore the Lorentz forces and that these will ultimately so 
distort the strain field that the magnetic energy of the blob will not continue to 
grow without limit. It is not easy to prove this assertion; there is an infinite energy 
available in a uniform strain field that extends to infinity, and it is not impossible 
that an infinite energy is transferred from the velocity field to the magnetic field 
despite the ‘back-reaction’ of the Lorentz force. In  this paper, only a search for 
possible steady states in which the magnetic energy is finite is attempted; whether 
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these states are the inevitable asymptotic states consequent upon the above 
initial conditions is left an open question. 

The problem posed above arose naturally in a detailed study of the turbulent 
dynamo problem. The condition h < v was first put forward by Batchelor (1950) 
as the condition that an initially weak random magnetic field should be intensified 
by a turbulent fluid motion. The intensification is chiefly associated with the 
small-scale straining, and the approximation (1.3) to the velocity field, though 
not ideal, is at  least a reasonable assumption over regions of small enough dimen- 
sion. In  the limit h --f 0,  the intensification must ultimately be checked by the 
Lorentz forces which resist the stretching. (This may still be true when h is small 
but non-zero, although Saffman 1963 has recently stressed that the increase in 
this case may be checked by the increased Ohmic dissipation associated with the 
decrease in scale of the strained magnetic field.) There is still considerable doubt 
as to the level attained by the magnetic field even in the limit h -+ 0. Batchelor 
estimated that approximate equipartition of energy would be established between 
the magnetic energy and the kinetic energy of the smallest turbulent eddies. 
Biermann & Schluter (1950, 1951) on the other hand estimated that equipartition 
between magnetic and kinetic modes would ultimately be established at  all 
length scales. These estimates differ by a factor of order the square-root of the 
overall Reynolds number of the turbulence, which may be huge in astrophysical 
applications. Hence the importance of examining in more detail the types of 
balance that can persist between magnetic and velocity fields. 

Interest in the problem is not, however, derived solely from the turbulence 
context. An enormous effort has been devoted in recent years to the problem of 
determining magnetostatic equilibrium configurations in a perfect conductor, 
that is, magnetic field configurations that can be supported by pressure gradients 
in a fluid a t  rest (see, for example, Grad & Rubin 1959; Kruskal & Kulsrud 1956). 
The chief stimulus for these investigations comes from thermonuclear fusion 
research, although the results are also of great interest in astrophysics. If the 
conductivity is large but finite, localized magnetic field distributions diffuse 
outwards in a fluid at rest. The dynamo problem is usually understood to signify 
the problem of determining a fluid motion which can maintain a steady magnetic 
field against persistent Ohmic decay. Cowling (1934) showed that no axisym- 
metric motion could reproduce this type of dynamo effect. Bullard (1949), 
Herzenberg (1958) and others have aimed at determining suitable non-axisym- 
metric velocity fields, but no attempt (other than qualitative) has been made to 
satisfy the dynamical equation of motion. In  this contribution, the dynamical 
equation i s  satisfied in an extreme situation (R < l), but the motion is axisym- 
metric and the field decays slowly if the conductivity is finite. By approaching 
the dynamo problem from this complementary angle, it  is hoped that a little 
light may be thrown on some of the inherent difficulties involved. 

2. The disk eddy in a region of compressive strain 
In  a region of compressive strain (a > 0) the volume V(t ) ,  as observed above, 

tends to be flattened into a disk-shaped region near the plane z = 0. The tension 
in the azimuthal lines of force provides an inward force resisting the outward 
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straining motion. As this tension increases, the field may eventually succeed in 
reversing the straining motion within V and thus in generating a disk-shaped eddy 
in which the streamlines are closed and (as t --f 03) the motion becomes steady as 
suggested schematically in figure 1. This possibility is now investigated in detail. 

It is supposed that the magnetic field B is purely toroidal 

(2.1) 

where p is the fluid density, If the velocity field u = (ZL,  0, zo)  is expressed in terms 
of a stream function $(r, z )  by the usual relations 

‘zc = -r-ly%z, u, = r-I$ r’ (2.2) 

r - -. 

FIGURE 1. Schematic representation of the disk eddy. The shaded region is the magnetic 
boundary layer and the magnetic wake. The flux of magnetic field through the material 
circuit I? is constant. 

then i t  is readily verified that the solution of the steady induction equation 
(with h = 0 ) ,  V h ( U h h )  = 0, (2.3) 

is h = (0, rH($) ,  01, (2.4) 

where H ( $ )  is an arbitrary function of $. 

V = lim V(t ) )  and a velocity distribution u satisfying 
The dynamic problem that remains is to find a closed surface S (the surface of 

t+m 

( 2 . 5 )  
1 

u . V u  = - ~ V p  + i V u  
P 

outside S, 

(2.6) 
1 

and u . V u  = - - V X + h . V h + v V 2 u  inside S, 
P 

where x = p + i ph2  is the sum of fluid and magnetic pressures inside S. The 
boundary conditions are that 

u N (ar, 0, - 2az) (3.7) 
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at large distances, and that ui and the total force on a surface element of S (with 

- 
unit normal ni), 

should be continuous across S. (The magnetic field has no component across S ,  
so that the contribution phi hj nj to the force on a surface element of S vanishes 
identically. ) 

Since the eddy is flattened by the external strain, it  is reasonable to look for a 
solution in which (at least in a first approximation) the volume V is bounded by 
the planes x = b and the cylinder r = a, where a 9 b. For large z the stream 

$ =  - function is ar2z, (2.8) 

and hence in the region r < a sufficiently far from the edge of the disk for edge 
effects to be negligible, it may be possibIe to express the stream function in the 
form 

(2.9) 

(2.10) 

Substitution of equation (2.9) in equations (2.2) and (3.5) leads to the equation, 
well known in the context of axisymmetric stagnation flow (Homann 1936; 
Schlichting 1960)) 

f’2-2f”’= a2 + i f  IN. (2.11) 

The pressure p is independent of x throughout the region z > b. There is a 
sudden drop in fluid pressure, however, on passing into the eddy region 
z > b, since the total pressure is continuous. (The normal viscous stress is 
continuous on x = b because the velocity and tangential stress are continuous 
there-see equation (2.20).) Substitution of equation (2.10) in equations (2.2) 
and (2.6), using the linking pressure condition, 

3~ = p  on ]=I = b (all r )  
yields the equation for g 

9’2 - 2gg“ = a2 - H2( $) + vg”’ 

(2.12) 

(2.13) 

Clearly the assumed form (2.10) of I++ is self-consistent only if H ( @ )  is equal to a 
constant, K say, independent of I++ (otherwise equation (3.13) still involves the 
variable r ) .  In  this case, the magnetic field within V assumes the simple form 

(2.14) 

(2.15) 

Other magnetic field distributions may also yield steady states, but this is 
certainly the simplest possibility, and it is the one to which attention is now 
restricted. The electric current distribution that gives rise to the field (2.14) is 
a uniform current through V parallel to the z-axis, the current loops being 
completed by a surface current on S. 

It can be shown that the effect of slow Ohmic diffusion within the eddy is (as 
might be expected) to smooth out current variations within the eddy so that the 
uniform current distribution chosen above is in a sense the preferred one. 
A relevant result (in which vorticity, rather than magnetic field, was the slowly 
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diffused quantity) was proved by Batchelor (1956). By integrating the equation 
of motion round a closed streamline in a region of closed streamlines in axisym- 
metric flow, he showed that the azimuthal component of vorticity must be pro- 
portional (in the steady state) to the distance r from the axis. The same reasoning 
applies here to magnetic field, so that the distribution (2.14) is the one which 
Ohmic diffusion slowly selects. Unfortunately this same diffusion is also respon- 
sible for a slow leakage of flux from the eddy (to be estimated later in this section) 
and it seems likely that, starting from an arbitrary initial distribution of the 
form (2.4), the eddy would disappear before the particular distribution (2.14) 
could be established by Ohmic diffusion alone. It is, nevertheless, possible to 
imagine a situation in which magnetic flux is continuously supplied to the eddy 
in which case the solution preferred by Ohmic diffusion is likely to be the relevant 
one. (In the situations envisaged by Batchelor, some vorticity would likewise 
leak from the region of closed streamlines, to be replaced by an input of vorticity 
generated at  a solid boundary.) 

Now the Reynolds number of the flow within V is assumed small so that the 
non-linear terms of equation (2.15) may be neglected. The simplified equation 
may then be integrated with the boundary conditions that the velocity profile 
is symmetrical about the plane z = 0, and that the plane x = b is a stream-surface, 
i.e. 

to give 

The velocity inside V therefore has components 

g(0) = g(b) = 0, g”(0) = 0, (2.16) 

g ( z )  = ( K ~  - a2) Z ( Z ~  - bz)/6v. (2.17) 

u = rg’(x) = ( K ~  - a2) r(3x2 - b2)/6v, 

W = -2g = - (K2-a2)Z(Z2-b2) /3v .  

(2.18) 

(3.19) 

The profile within the disk is thus parabolic, and, since the stress must be con- 
tinuous at  the surface of the disk, it  can be matched to the solution outside only 
if K~ > a2, when the profile is convex to the origin; this is a necessary condition 
on the strength of the magnetic field if a disk eddy of this type with closed 
streamlines is to be possible. 

Equation (2.11) must now be solved for f ( z )  subject to the boundary conditions 

f ’(a) = a, I 

f (b )  = 0, I 
f ’ ( b )  = g’(b) = ( K 2 -  2 

f ” ( b )  = g”(b)  = ( ~ ~ - a ’ ) b / v .  a b 2 ’ 3 v 7 J  

(2.30) 

The last two follow from the continuity of velocity and tangential stress on the 
surface x = b. Three of these conditions determine a solution of equation (2.11); 
the fourth will determine the thickness b of the disk. The non-linear terms can- 
not be neglected in this equation, because they dominate for large z. 

Now Homann determined the particular solution f l ( z )  of equation (2.11) that 
satisfies the stagnation flow boundary conditions 

f ;@) = a> fl(0) = 0, f;m = 0, 
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by expanding the solution in powers of z (for small z )  and z-l (for large z )  and 
matching the two solutions. The first few coefficients in the following expansion 
for small z m 

f1(Z) = (va)I. .,(a/v)*" z", (2.21) 

a. = al = 0, a2 = 0.66, a3 = 0-16 ,  a4 = a5 = 0, .... ( 2 . 2 2 )  

(2.23) 

n = O  
were found to be 

A more general solution satisfying the conditionf'(co) = a is 

f ( 4  = c +fib - ZO) '  

where c and zOare constants; these can be chosen so that the remaining conditions 
of the set (2.30) are satisfied. Clearly the conditionf(b) = 0 determines c. In the 
remaining two conditions only the first non-vanishing term of the series in the 
expression (2 .23)  need be retained, since when z is of order b (and provided z,, is 
also of order b, as the subsequent analysis confirms (see equation 2.26)) ,  the ratio 
of each term to its successor is of order (v/a)+ b-1, and this is at least of order R-*, 
i.e. much greater than unity by the assumption (1 .2 )  (assuming that b lies in the 
range of length scales for which (1 .2 )  is valid). 

The conditions are therefore 

(2.24) } 
2a2(b - zo) (a3/lv)* = ( K ~  - a2) b2/3v 

2a2(a3/v)* = ( K ~  - a2) b2/v, and 

which may be solved immediately to give 

b = 1.32(a3v)* ( K ~  - a2)-l (2 .25)  

and z,, = gb. (2 .26)  

It is now apparent that the solution is self-consistent only if K~ a a2, for only 
then is b 6 (v/a)* as the model requires. In  fact from (2 .25) ,  b is then given 
approximately by 

or equivalently 

where Rb is the Reynolds number based on the length scale b. 
If the total volume of the eddy is 7, its radius a is then given by 

b M 1.32(v/a)* ( C Z ~ / K ~ ) ,  (2 .27)  

K 2 / a 2  M 1.32Rb-4, (2.27 a) 

ra2b = 7. (3.28) 

If K~ is not very much greater than a2 an eddy with closed streamlines may still 
exist but clearly the flat disk approximation is not then appropriate. 

The simplest interpretation of the ratio K / C ~  is that ~ ~ / a ~  is the ratio of the 
magnetic energy in the disk 

to the kinetic energy of the fundamental strain field 

f 1; a2r2. 2rr dr dz 
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(neglecting b2 compared with az) that would exist in the same volume if the eddy 
were not present to distort it. Alternatively, since the electric current inside 
the eddy is 

J = - -  (477p)' v Ah = (O,O, ($1'~) , . 
477 P 

the ratio K / a  may be interpreted as giving a measure of the strength of this 
current compared with the rate of strain const,ant a. 

FIGURE 2. Streamlines and velocity profile for a disk eddy of infinite radius. 

The streamlines and radial velocity profile determined by the above solution 
are sketched in figure 2 .  The solution of course gives no information about the 
flow near the rim of the disk, where, as suggested in figure 1, the streamlines must 
close. The solution strictly describes only a disk of infinite radius; it is not certain 
that a similar steady solution describing a disk of finite radius exists at all. The 
difficulties encountered in searching for such a solution are similiar to, if not 
greater than, those encountered in investigations of the flow due to a rotating 
disk of finite radius, and they have not been overcome in either problem. 

The real significance of the above solution is that it demonstrates the possibility 
of a balance between magnetic and dynamic forces. If Lorentz forces are negli- 
gible, the intensity of any magnetic field in a perfect conductor increases 
exponentially under uniform strain. Here, in one case, albeit specialized, it has 
been demonstrated that the effect of Lorentz forces is to admit the possibility of 
a steady state; and it seems likely (although this has not been proved) that any 
magnetic field initially confined near the (x, y)-plane in a region of compressive 
strain will either approach a steady state similar to that of the disk eddy, or at  
least will ultimately fluctuate about such a state. 
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Eflects of finite conductivity 
If the conductivity is large but finite, the discontinuity in the magnetic field 
across the surfaces z = f b of the disk will be smoothed out in some form of 
magnetic boundary layer, and, if the disk is of finite radius, some magnetic flux 
will be convected radially outwards into a magnetic wake. These features may 
be analysed simply as follows. 

Near both sides of the surface z = b of the disk, the velocity distribution (3.18) 
and (2.19) (continuous across the surface), with neglect of a2 compared with 
K ~ ,  is K2b2 

3, 
u = (r ,  0, - 2(z  - 6 ) ) .  

In  the magnetic boundary layer, the field h satisfies the equation 

V A ( U A h ) + h V 2 h  = 0, 

h = 0 and h = (0, K r ,  0) 
with boundary conditions 

(2.29) 

(2.30) 

at the outer and inner edges of the layer respectively. A trial solution of the form 

h = (0, rF(z) ,  0) 
gives an equation for F(z )  

with relevant solution 

(2.31) 

(3.33) 

(3.33) 

an error function tending to a step-function as h --f 0. The layer on z = - b is of 
course the mirror image in the plane z = 0 of that on z = + b. The thickness of 
the layer is of order 

6 = (hv/K2b2)* z (h/a)* ( K / u ) ,  (2.34) 

on using the expression (2.27) for the thickness b. The condition 6 < b is then 
satisfied provided 

or equivalently, using (2.37a) and the fact that (h/v)* = (R/R,)*, 

(h/V)* < a 3 / K 3 ,  (3.35) 

R$, B R-4. (2.35 a )  

It is worth remarking that the contribution h . V h  to the Lorentz force, that 
cannot be compensated by the steep pressure gradient that exists in the layer, 
is of the form - r[F(z)I2 u, (where u, is a unit vector in the radial direction). This 
increases smoothly from zero outside the eddy to its value - T K ~ U ,  inside, so that 
no wild departures from the velocity distribution (2.29) are to be expected within 
the layer. 

For a disk eddy of finite radius, the inner part of this layer is presumably swept 
round into the interior of the disk giving rise to  some kind of magnetic shear layer 
on the plane z = 0. The outer part is swept radially outwards by the external strain 
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into a magnetic wake. Far downstream, equation ( 2 . 3 0 )  with u = (ar, 0, - 2 a z )  
admits the similarity solution 

h = (0, h, ar-l exp ( - az2/h), 0) ,  ( 2 . 3 6 )  

where h, is a measure of the maximum field strength that leaks from the eddy. It 
has already been remarked that an eddy can form only if K > a; it therefore seems 
possible that the outer part of the boundary layer (2.31) satisfying F(z )  < a will 
escape into the wake and that the inner part where F(z)  > a will be drawn back 
into the eddy. If this is true, then h, = O(aa) and the field in the wake 

h = (0, Caa2r-l exp ( -az2/h), 0 ) ,  (2.37) 

where C is a constant of order unity. This will hold only for r 9 a. 
The eddy decays slowly as the toroidal magnetic flux escapes into the wake. 

It is possible to estimate the rate of decay knowing the form of the magnetic wake 
( 2 . 3 7 ) .  Consider the flux CD of the field h (proportional to the usual magnetic flux) 
through the material circuit I? in the plane 8 = 0, sketched in figure 1, consisting 
of the axis of the disk, two lines IzI = x1 9 b, and a line r = r1 9 a, cutting the 

wake. The diffusive transport of flux across r is - h V A h .dl and this is zero 

since V A h is radial in the wake and zero elsewhere on I‘. Hence CD is constant as I7 
moves with the fluid. The contribution to CD through the eddy itself is of order 
a2bK which may decrease through a decrease in a2 or b or K .  In a time at, the part 
of r crossing the wake moves a distance ar,dt, so that, using equation (2.37), the 
contribution to 

k 

from the wake increases by an amount 

This must be compensated by the leakage of flux from the eddy, so that 

- a (a%) = - 2C ’ a 2 a 2 ( 3 4  , 
at 

where C‘ is another constant of order unity. Since the magnetic field is convected 
away from the rim of the eddy, it seems likely that only a2 decreases in time and 
that K (and consequently b from equation ( 2 . 2 7 ) )  remain constant. Then 

da2 a2a 
at b K  
- = 2 C ’ ( h ) +  - , 

so that the radius of the disk decreases according to the law 

a(t) = a(0) exp [ - C’(ha)+ aK-lb-lt]. ( 2 . 3 8 )  

The volume of the eddy therefore decreases, which is not surprising, because as 
the magnetic field leaks away from the eddy its power to stop the straining 
motion becomes less and less effective. The half-life of the eddy, again using the 
relation (2.27), is of order (v/h)g K - ~ .  
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3. Regions of extensive strain; the spherical eddy 
In  regions of extensive strain magnetic loops will be drawn out parallel to the 

z-axis. A search for steady cigar-shaped magnetic eddies is unsuccessful because 
the magnetic lines of force, which must coincide in the steady state with the 
streamlines within the eddy, are not suitably arranged to hold the eddy together 
against the disruptive stress of the external strain. 

FIGURE 3. Streamlines for the spherical eddy in a perfectly conducting fluid. 

There is one interesting solution, however, in regions of axisymmetric extensive 
strain, which describes a spherical eddy in which the electric current is again 
uniform and parallel to the axis of symmetry (figure 3). The magnetic field in 
such an eddy (of radius a )  in spherical polar co-ordinates (r, 8,$)  is 

h = (0, 0, K r  sin 6)) (3.1) 

and the equations of motion, neglecting non-linear terms, are 

(3 .2 )  

(3.3) 

1 

P 

and - - V x + h . V h + v V Z u  = 0 (r < a).  

The Stokes approximation is justified here, as for the problem of low Reynolds 
number streaming past a sphere, by the fact that a solution is found which 
satisfies the outer boundary condition sufficiently accurately within the region in 
which inertia forces are negligible. 

- -Vp+vV2u = 0 ( r  > a )  

1 

P 



236 H .  K .  Moffatt 

Using the expression (3.1), equation (3.3) may be written in the form 

1 

P 
--Vq+vV,u = 0,  (3.4) 

where q = x + &pK2r2 sin2 13. (3.5) 

by the relations 
(3.6) 

The velocity u = (u, v, 0) may be derived from a Stokes stream function i ( r ,  0) 

u = (r2 sin 0)-1 +o, 2) = - ( y  sin e)-l ir, 
and the outer boundary condition is 

+ N -ar3siii2I9cos 0 as r + 03. 

A solution is therefore sought of the form 

f ( r )  sin2 19 cos I9 (r > a)  
g(r)sin28cos0 ( r  < a )  

(3.7) 

with boundary conditions (on r = a)  

f ( a )  = g(a) = 0, f ' ( a )  = g'(a), f " (a )  = g" (a) ,  (3.9) 

the last reflecting continuity of tangential stress across the surface of the sphere. 
Equations (3.3) and (3.5) imply that +everywhere satisfies the Stokes equation 

Hence 

($--:),g = 0 ( r  < a ) ,  

with general solutions - 

I f = A, r5 +B,r3+ C, + D, r-2, 

g = A,r5 + B,r3+ C, + D,r-,. 

Conditions a t  r = 0 and r = co imply that 

then the four conditions (3.9) determine C,, D,, A ,  and B,, giving 

A, = C, = D, = 0, B, = -a;  

f = -1 *ar3(4 - 7a3/r3 + 3a5/r5), 

g = $ar3(1 -r2/a2). 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

We have yet to satisfy the condition that the normal stress should be continuous 

(3.14) across r = a, i.e. x = p or r = a (all@). 
From equations (3.2) and (3.13), the pressure is 

plp  = ( m a a 3 / 2 r 3 )  sin2 8-  21uaa3/4r3 +pm/p, 

and, from equation (3.4), 

q/p = - (63var2/4a2) sin2 8 + 21uar2/2a2 + qo/p, 

so that, using the relation (3.5), the condition (3.14) gives 

2 a 2 ~ 2  = - 105va, (3.15) 
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once again relating the electric current density (proportional to K )  to the dimen- 
sion a of the eddy. Only if a < 0, i.e. only in regions of extensive strain, can this 
flow exist. The gross effect of the magnetic forces is to reverse the rates of strain 
in the neighbourhood of the origin (as for the disk eddy), so that a steady state 
can be realized. The streamlines for the flow described by the stream function 
(3.8) and (3.13) are sketched in figure 3. 

4. Application to turbulence in interstellar gas clouds 
Although the magnetic eddies described above are certainly of mathematical 

interest, the conditions (1.2) under which they may materialize are rather 
extreme, and the physical relevance of the solutions requires some discussion. 
The condition (1.1) is satisfied in hot HI1 interstellar gas clouds, for which the 
usual estimates of temperature T, number density of hydrogen ions n, and length 
scale L are 

Molecular transport theory for a totally ionized hydrogen plasma gives the 
following expressions for h and v (Spitzer 1956; Kantrowitz & Petschek 1957): 

T E 104’K, n z 10111-3, L z 1019cm. (4.1) 

h = 5.19 x 101lT-~lnA, 

1’ = 1.81 x 1O9Tf(n1nh)-l, 

(4.2) 

(4.3) 

where A is a collision parameter, depending only on T and n, and tabulated by 
Spitzer. Substituting the particular values (4.1) gives 

h z 1-2 x 107cm2/sec, 1’ M 7.8 x 1017cm2/sec, (4.4) 

E 1.5 x 10-9, (4.5) 

so that the condition (1.1) is indeed satisfied. The velocity of sound, corre- 
sponding to the conditions (4.1), is of order 10km/sec. An irregular component 
of fluidvelocity U (say) of order 5 t o  7 km/sec is observedin these clouds (Burbidge 
1959) so that the motion is subsonic, though perhaps not incompressible. At the 
same time it is likely to be highly turbulent; the overall Reynolds number based 
on the above estimates is of order 108. I n  this case the kinetic energy cascades 
through the turbulent spectrum and is dissipated a t  a rate (per unit mass) 

c E U3L-1 z 10cm2sec-3. (4.6) 

(4.7) 

The length scale of the smallest turbulent eddies is 

zv E (t+)* E 1013cm. 

Throughout any region of fluid small compared with 1, the strain field is uniform 
and the associated Reynolds number small. Moreover, the small-scale velocity 
differences occurring in these regions are an order of magnitude smaller than the 
large scale velocity U ,  so that on the small scale the motion may certainly be 
treated as incompressible. These conditions are then conducive to the formation 
of magnetic eddies of the type described in $ 3  2 and 3. The dimension of these 
eddies would be so small (on a cosmical scale) that they could not be individually 
detected. If a large number of eddies were distributed throughout the fluid, 
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however, one eddy (say) in each region of fluid of dimension 1, in which the strain 
is approximately uniform, then they would all contribute to a stationary random 
magnetic field whose statistical properties and effects might be observable. 

Suppose, for the sake of argument, that there is one disk eddy of radius 
a = O(ZJ (the maximum possible) within every sphere of compressive strain of 
radius I , ,  and one spherical eddy of radius a = O(Z,) in every sphere of extensive 
strain of radius I,. The eddies are then packed as closely as possible at  any instant 
without mutual interference. The magnetic energy within the disk eddy is 

z pa4(a3v)+ 

using equations (2.14) and (3.27), and similarly the magnetic energy in a spherical 
eddy of radius a, M, say, is of order pvaa3. Under the close packing assumption, 
the magnetic energy density is 

(4.8) M z (Md or 2M,)/QmZ: = O [ ~ ( E V ) & ] ,  

using a = O(l,), I ,  = O ( V ~ / E ) ) ,  a = O(s/v)$.  Thus the magnetic energy density is of 
the same order of magnitude as the kinetic energy density of the small-scale 
motion; as pointed out by Batchelor (1950),  this is the only dimensional 
possibility if it is the average strain which controls the magnetic energy density 
level. 

given above imply a magnetic The particular values for E ,  v and p ( z 
energy density. 

corresponding to a root-mean-square magnetic field (with p E 1 )  

(s)* z 3 x Gauss. (4 .9)  

This is weaker than currect estimates of the general galactic magnetic field 
( N 5 x Gauss) based on polarization measurements. However, the evidence 
also suggests that this general field is uniform over length-scales much greater 
than l O I 3  cm and is roughly aligned along the spiral arms of the galaxy, suggesting 
that it is not generated by the internal turbulence of the galaxy, but that it is 
either generated by a regular large-scale motion or is of extra-galactic origin. 
There may, nevertheless, exist certain hot clouds of high conductivity which 
cannot be penetrated by a general uniform field, but within which a genuine 
turbulent magnetic field of the type described above, whose r.m.5. intensity is of 
order Gauss, may be supported. 

The ratio h / v ,  from the expressions (4.2) and (4.3), is proportional to T-4 
(apart from the weakly varying logarithmic factor), and therefore decreases 
fairly rapidly with temperature. It may, therefore, be much less than unity in a 
hot laboratory plasma, but it is hardly realistic to apply the ideas of this paper in 
such circumstances, because, first, such a plasma is usually permeated by a strong 
applied magnetic field which controls (rather than is controlled by) the dynamics 
of any plasma motion, steady or turbulent, and secondly, at the high tempera- 
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tures a t  which h/v < 1 (based on the expressions (4.2) and (4.3)) the mean free 
path of ions and electrons is much greater than the dimensions of the apparatus 
(a criticism that cannot be levelled a t  the cosmic laboratory) and the conven- 
tional equations of magnetohydrodynamics are of dubious applicability. 

It is a pleasure to record my gratitude to Dr G. I(. Batchelor for the guidance 
and encouragement that he has given throughout the course of this research. 
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